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• Approximate indirect illumination by

1. Generate VPLs

2

Instant radiosity

2. Render with VPLs



• Large number of VPLs required
• True even for diffuse scenes
• Scalability issues
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Ground truth 1,000 VPLs 100,000 VPLs

Instant radiosity with glossy surfaces



1. Generate many, many VPLs
2. Use only the most relevant VPLs for rendering

• Choosing the right VPLs
– Per-pixel basis

• Lightcuts [Walter et al 05/06]

– Per-image basis
• Matrix Row Column Sampling [Hašan et al. 07]
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Scalable many-light methods



Scalability with many lights

Approach #1:

Lightcuts & 
Multi-dimensional lightcuts

Walter et al., SIGGRAPH 2005/06

Slides courtesy Bruce Walter:
http://www.graphics.cornell.edu/~bjw/papers.html



Lightcuts: A Scalable 
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Lightcuts 

• Efficient, accurate complex illumination

Environment map lighting & indirect
Time 111s

Textured area lights & indirect
Time 98s

(640x480, Anti-aliased, Glossy materials)

Presenter
Presentation Notes
What is lightcuts?  Lightcuts is a new scalable solution for efficiently computing complex illumination.  Two examples are shown here.  The image on the left is lit by an environment map with illumination captured from the real world, while the image on the right includes two simulated high dynamic range flat-panel displays.  Both are challenging illumination problems.  In addition both images include indirect illumination, glossy materials, and anti-aliasing.  Yet our method was able to produce each image in under two minutes on a single machine.



Scalable

• Scalable solution for many point lights
– Thousands to millions
– Sub-linear cost
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Presenter
Presentation Notes
The core of lightcuts is a new scalable algorithm for efficiently approximating the light from many point lights.  By many I mean thousands to millions.  Here we show the time to compute this tableau scene with environment map illumination using varying numbers of lights.  Evaluating each light individually gives a cost that increases linearly with the number of lights.  Using Ward’s technique we can avoid shadow to some of the weaker lights, but the cost is still basically linear.  However lightcuts cost is strongly sub-linear.  Thus its advantage over previous techniques grows dramatically as the number of lights increases.



Complex Lighting

• Simulate complex illumination using point 
lights
– Area lights
– HDR environment maps
– Sun & sky light
– Indirect illumination

• Unifies illumination
– Enables tradeoffs 

between components Area lights + Sun/sky + Indirect

Presenter
Presentation Notes
Once we have a scalable solution for many point lights, we can use this to compute other types of complex illumination.  The four examples we demonstrate in the paper are area lights, high dynamic range environment maps, sun & sky light, and indirect illumination.  Moreover this allows us to unify the handling of different illumination types and enables new types of tradeoffs.  For example, bright illumination from one source allows coarser approximations of other sources.



Lightcuts Problem

Visible
surface

Presenter
Presentation Notes
First let’s formulate the lightcuts problem.  Give a visible surface point and a large collection of point lights.



Lightcuts Problem

Presenter
Presentation Notes
We want to compute how much light reaches the visible surface



Lightcuts Problem

Camera

Presenter
Presentation Notes
And is reflected to a camera.



Key Concepts

• Light Cluster
– Approximate many lights by a single brighter 

light 
(the representative light)

Presenter
Presentation Notes
There are a few key concepts we need to understand the lightcuts approach.  First is a light cluster where we approximate a group of lights by replacing them by a single brighter light called the representative light.



Key Concepts

• Light Cluster
• Light Tree

– Binary tree of lights and clusters

Clusters

Individual
Lights

Presenter
Presentation Notes
Second is the light tree which is a binary tree of lights and clusters.  The leaves of this tree are the individual lights while the interior nodes represent clusters which get progressively larger as we go up the tree.



Key Concepts

• Light Cluster
• Light Tree
• A Cut

– A set of nodes that partitions the lights into 
clusters

Presenter
Presentation Notes
The third is a cut which is a set of nodes that partitions the lights into clusters.  Here illustrated by the orange line.



Simple Example

#1 #2 #3 #4

1 2 3 4

1 4

Light Tree

Clusters

Individual
Lights

Representative
Light
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Presenter
Presentation Notes
Here is a simple scene with four lights and its corresponding light tree.



Three Example Cuts

1 2 3 4

1 4

4

1 2 3 4

1 4

4

1 2 3 4

1 4

4

Three Cuts  

#1 #2 #4 #1 #3 #4 #1 #4

Presenter
Presentation Notes
And here we show three example cuts through the light tree.  Highlighted above each cut are the regions where that cut produces an accurate approximation of the exact illumination.



Three Example Cuts

1 2 3 4

1 4

4

1 2 3 4

1 4

4

1 2 3 4

1 4

4

Three Cuts  

#1 #2 #4 #1 #3 #4 #1 #4

Good Bad Bad

Presenter
Presentation Notes
If we look at this green point on the left of the images, the orange cut produces a good approximation while the blue and purple cuts would cause too much error.



Three Example Cuts

1 2 3 4

1 4

4

1 2 3 4

1 4

4

1 2 3 4

1 4

4

Three Cuts  

#1 #2 #4 #1 #3 #4 #1 #4

Bad Good Bad

Presenter
Presentation Notes
Conversely for this point in the center of the images, the blue cut is a good approximation while the orange and purple cuts are not usable.  This illustrates an important point.  We will want to use different cuts in different parts of the image.



Three Example Cuts

1 2 3 4

1 4

4

1 2 3 4

1 4

4

1 2 3 4

1 4

4

Three Cuts  

#1 #2 #4 #1 #3 #4 #1 #4

Good Good Good

Presenter
Presentation Notes
For this point on the right side of the images, all three cuts usable.  In this case the purple cut is the best choice because it will be the cheapest to compute as it contains the fewest nodes.



Algorithm Overview

• Pre-process
– Convert illumination to point lights
– Build light tree

• For each eye ray
– Choose a cut to approximate the illumination

Presenter
Presentation Notes
Our algorithm consists of a pre-process where we convert all illumination types to point lights and build the light tree.  Then for each eye ray we need to choose an appropriate cut to use.



Convert Illumination

• HDR environment map
– Apply captured light to scene 
– Convert to directional point lights

using [Agarwal et al. 2003]

• Indirect Illumination
– Convert indirect to direct 

illumination using Instant 
Radiosity [Keller 97]

• Caveats: no caustics, clamping, etc.

– More lights = more indirect detail

Presenter
Presentation Notes
We use various existing techniques to convert various illumination types to point lights.  For environment maps we use the technique of Agarwal et al.  For indirect illumination, we use the instant radiosity technique which generates virtual indirect point lights to approximate the indirect illumination.  The amount of indirect detail we can capture is directly related to the number of virtual lights created.  Thus we want to use lots of lights to accurately simulate the indirect.



Algorithm Overview

• Pre-process
– Convert illumination to point lights
– Build light tree

• For each eye ray
– Choose a cut to approximate the local 

illumination
• Cost vs. accuracy
• Avoid visible transition artifacts

Presenter
Presentation Notes
Then we build the light tree using a simple greedy approach.  The more difficult problem is choosing the cuts.  There is a cost vs accuracy tradeoff of cuts higher in the tree are cheaper while cuts lower the in tree are more accurate.  We also need to avoid transition artifacts.  Since we will use different cuts in different parts to the image, there will be transitions between places where we use a cluster and places where we refine it, and we don’t want these to produce visible artifacts.  We will actually use this to drive the cut selection.



Perceptual Metric

• Weber’s Law
– Contrast visibility threshold is fixed percentage of 

signal
– Used 2% in our results

• Ensure each cluster’s error < visibility threshold
– Transitions will not be visible
– Used to select cut

Presenter
Presentation Notes
We can use Weber’s law which say the the minimal visible change is roughly a fixed percentage of the total signal.  For our results we used a threshold of 2%.  We can ensure that cluster transitions are not visible by guaranteeing that the clusters error always be less than this threshold.  But we will need to be able to put an upper bound on the error introduced by a cluster.



Illumination Equation

result = Mi Gi Vi IiΣ
lights

Currently support diffuse, phong, and Ward

Presenter
Presentation Notes
The contribution from a point light can be written as the product of four terms and then summed over all the lights to get the total result.  The first term is a material term that depends on the material properties of the visible surface.  Our initial implementation supports diffuse, phong and ward materials.



Illumination Equation

result = Mi Gi Vi IiΣ
lights

Presenter
Presentation Notes
The second term is the geometric term that depends on the position and orientation of the point light.



Illumination Equation

result = Mi Gi Vi IiΣ
lights

Presenter
Presentation Notes
The third term is the visibility term since some lights may be occluded.  And the fourth term is the light’s intensity.



Cluster Approximation

Cluster

result ≈  Mj Gj Vj IiΣ
lights

j is the representative light

Presenter
Presentation Notes
When we approximate a cluster we use the material, geometric, and visibility terms from the representative light for all the lights.  This is much cheaper but introduces some error.



error < Mub Gub Vub Ii

Cluster Error Bound

Cluster

Σ
lights−

• Bound each term
– Visibility <= 1 (trivial)
– Intensity is known
– Bound material and 

geometric terms using 
cluster bounding volume

ub == upper bound

Presenter
Presentation Notes
We can bound the approximation error by computing upper bounds for each of the terms over the cluster.  Visibility is always less than or equal to one, so we use one as its trivial bound.  Intensities are known ahead of time.  The challenging part is to cheaply and tightly bound the material and geometric terms.  We have come up with such bounds based on the bounding volume of the cluster and these are described in the paper.



Cut Selection Algorithm

Cut

• Start with coarse cut (eg, root node)

Presenter
Presentation Notes
Once we can bound cluster error, we can use this to select cuts.  We start with a coarse cut such as the root node of the tree.



Cut Selection Algorithm

Cut

• Select cluster with largest error bound

Presenter
Presentation Notes
Then we select the node with the largest error bound.  (the root node in this case).



Cut Selection Algorithm

Cut

• Refine if error bound > 2% of total

Presenter
Presentation Notes
And refine this node if its error is greater than 2% of the estimated total.  Refining means removing a node from the cut and replacing it with its children.



Cut Selection Algorithm

Cut

Presenter
Presentation Notes
Then we again select the cut node with the largest error



Cut Selection Algorithm

Cut

Presenter
Presentation Notes
And refine if its error is above threshold



Cut Selection Algorithm

Cut

Presenter
Presentation Notes
And repeat again



Cut Selection Algorithm

Cut

• Repeat until cut obeys 2% threshold

Presenter
Presentation Notes
Until each node on the cut obeys our 2% threshold.



Lightcuts (128s) Reference (1096s)

Kitchen, 388K polygons, 4608 lights (72 area sources)

Presenter
Presentation Notes
Here is a result computed using this method.  This kitchen scene contains 72 area lights each approximated by 64 point lights.  The lightcuts image on the left took 128 seconds while the reference image on the right that evaluated all the lights took over 1000 seconds.  However even  close inspection reveals no visible difference between them.



Lightcuts (128s) Reference (1096s)

Error Error x16

Kitchen, 388K polygons, 4608 lights (72 area sources)

Presenter
Presentation Notes
We can compute a error image on the left which is very dark and then magnify the differences by a factor of 16 to see the types of error introduced.  What we see are lots discontinuity lines which are the transitions between using a particular cluster and refining it.



Combined Illumination

Lightcuts 128s

4 608 Lights
(Area lights only)

Lightcuts 290s

59 672 Lights
(Area + Sun/sky + Indirect)

Presenter
Presentation Notes
We can also use lightcuts to compute much more complex illumination.  On the right we have added both sun/sky and indirect illumination to create a much richer image.  Although we have increased the number of point lights by over a factor of 10, the total time increased by only a factor of just over 2.



Combined Illumination

Lightcuts 128s

4 608 Lights
(Area lights only)

Avg. 259 shadow rays / pixel

Lightcuts 290s

59 672 Lights
(Area + Sun/sky + Indirect)

Avg. 478 shadow rays / pixel
(only 54 to area lights)

Presenter
Presentation Notes
The number of shadow rays also increased by about a factor of 2.  However image on left used an average of 259 shadow rays to the area lights, the image on the right used on 54.  Our system automatically uses the presence of the other illumination to allow a coarser approximation of the area lights.



Lightcuts Reference

Error x 16Cut size



Scalable

• Scalable solution for many point lights
– Thousands to millions
– Sub-linear cost
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• Problem: Large cuts in dark areas

43

Lightcuts



Lightcuts Recap

• Unified illumination handling
• Scalable solution for many lights

– Locally adaptive representation (the cut)

• Analytic cluster error bounds
– Most important lights always sampled

• Perceptual visibility metric
• Problems

– Large cuts in dark regions
– Need tight upper bounds for BRDFs

Presenter
Presentation Notes
I’ve presented lightcuts, which is a unified framework for handling complex illumination.  Its core is a new scalable solution for handling many lights and a locally adaptively illumination approximation called the cut.  It is based on analytic cluster error bounds that guarantee that we will always sample the most important lights and a perceptual visibility metric.  There are more details in the paper and you can come see our implementation sketch this afternoon.  If you do read the paper, I recommend that you look at an electronic version as several of the figures were printed incorrectly in the printed proceedings.



Multidimensional Lightcuts

Bruce Walter
Adam Arbree

Kavita Bala
Donald P. Greenberg

Program of Computer Graphics, Cornell University



Problem

• Simulate complex, expensive phenomena 
– Complex illumination
– Anti-aliasing
– Motion blur
– Participating media
– Depth of field

    

 

Pixel = L(x,ω)...
Lights
∫

Pixel
Area

∫
Aperture

∫
Volume

∫
Time
∫

    

 

Pixel = L(x,ω)...
Lights
∫

Pixel
Area

∫
Time
∫

Presenter
Presentation Notes
Let me first describe the problem we’re trying to solve.  In order to compute high quality realistic images we need to be able to simulate multiple complex expensive phenomena.  For instance the image on the right includes complex illumination, both from a captured environment map and indirect illumination, plus anti-aliasing and, on the right side of the image, motion blur for the spinning roulette wheel.  Thus for each pixel we need to integrate the contribution over multiple domains.



Problem

• Simulate complex, expensive phenomena 
– Complex illumination
– Anti-aliasing
– Motion blur
– Participating media
– Depth of field

    

 

Pixel = L(x,ω)...
Lights
∫

Pixel
Area

∫
Time
∫

Volume
∫

Presenter
Presentation Notes
If we also want to include participating media then we also need to integrate over the volume of the scene.  For example in this smoky kitchen scene which shows shafts of sunlight streaming into the kitchen.



Problem

• Simulate complex, expensive phenomena 
– Complex illumination
– Anti-aliasing
– Motion blur
– Participating media
– Depth of field

    

 

Pixel = L(x,ω)...
Lights
∫

Pixel
Area

∫
Time
∫

Volume
∫

Aperture
∫

Presenter
Presentation Notes
And if we want to add depth of field or camera focus such as shown in this scene then we need to also integrate over the aperture of the camera.



• Complex integrals over multiple dimensions

– Requires many samples
    

 

Pixel = L(x,ω)...
Lights
∫

Pixel
Area

∫
Time
∫

Volume
∫

Aperture
∫

camera

Problem

Presenter
Presentation Notes
The result is that to compute each pixel we need to integrate over multiple complex domains as illustrated here.  The requires computing a large number of samples which are transport paths from the lights to the camera.



Multidimensional Lightcuts

• Solves all integrals
simultaneously

• Accurate
• Scalable
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Presenter
Presentation Notes
In this talk, I describe our new unified rendering solution called multidimensional lightcuts.  By solving all the integrals simultaneously our solution is able to achieve superior scalability.  An example of our scalability is shown on the right.  We varied the number of temporal sample per pixel in our roulette scene and show how this relates to image time.  With traditional approaches like supersampling the cost increases rapidly with the number of temporal samples whereas the cost in our new multidimensional technique show sublinear scaling and allows us to compute high quality motion blur at a much lower cost.



Direct only (relative cost 1x) Direct+Indirect (1.3x)

Direct+Indirect+Volume (1.8x) Direct+Indirect+Volume+Motion (2.2x)

Presenter
Presentation Notes
This example shows another way in which our system is scalable.  We take a single scene and progressively add more and more complex effects.  Thus the image on the upper left is a direct only solution for the area lights and sun.  The image on the upper right also include indirect illumination.  The image on the lower left also added smoke or participating media to the scene and finally the image on the lower right further adds motion blur.  Even though this image includes multiple complex effects its rendering time only increases by a factor of 2.2 compared to the direct only solution which is much better than in traditional approaches where adding each effect would greatly increase the image time.



Camera

• Discretize full integral into 2 point sets
– Light points (L)
– Gather points (G)

Point Sets

Light points

Presenter
Presentation Notes
So now let’s describe how our system works.  We discretize the full integral equation using two point sets.  First we convert all the light sources in the scene to point light approximations.



Camera

• Discretize full integral into 2 point sets
– Light points (L)
– Gather points (G)

Point Sets

Light points

Presenter
Presentation Notes
We also trace particles from the light to create additional light points that account for the effect of indirect illumination.



Camera

• Discretize full integral into 2 point sets
– Light points (L)
– Gather points (G)

Point Sets

Light points

Pixel

Gather points

Presenter
Presentation Notes
Then for each pixel we trace rays from the camera through the pixel to generate gather points.  Note that these point can be generated over time, over the volume, camera aperture, etc. to account for the different integral domains.



• Discretize full integral into 2 point sets
– Light points (L)
– Gather points (G)

Point Sets

Light points

Gather points

Presenter
Presentation Notes
The the set of all gather-light pairs forms a very large set of transport paths that can accurate approximate the full integral.



Pixel =       Sj Mji Gji Vji IiΣ
( j,i)∈GxL

• Sum over all pairs of gather and light points
– Can be billions of pairs per pixel

Discrete Equation

Presenter
Presentation Notes
Here is the discretized equation.  I won’t cover all the detail here, they are in the paper.  However you should note that we converted all the integrals over multiple domains into a single summation over pairs of gather and light points.  Also there may be a very large number of these pairs.  If we generate a thousand gather points per pixel and a million light points then the sum would be over a billion pairs per pixel.  It would be prohibitively expensive to evaluate the full sum and so instead we need a way to accurate approximate the sum while only actually evaluating a much smaller number of pairs.



Product Graph

• Explicit hierarchy would be too expensive
– Up to billions of pairs per pixel

• Use implicit hierarchy 
– Cartesian product of two trees (gather & light)

Presenter
Presentation Notes
So let me now describe the product graph.  Since we could have up to billions of pairs per pixel, explicitly constructing a hierarchy over them would be too expensive.  Instead we are going to create an implicit hierarchy via the cartesian product of two trees, the gather tree and the light tree.



Light tree
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Presenter
Presentation Notes
So first we generate all the light points and cluster them together into a light tree.  Then for each pixel we generate the gather points and cluster them together into a gather tree.



Product Graph

Light tree

Gather tree
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Presenter
Presentation Notes
Then we can use these trees to define the product graph which forms a hierarchy over the set of all gather-light pairs.  Each node in the product graph corresponds to pairing of one node from the light tree and one node from the gather tree.



Product Graph

Light tree

Gather tree

X =
L0 L1 L2 L3

L4 L5

L6

G1G0

G2
G1

G0

G2

L0 L4 L1 L6 L2 L5 L3

Product Graph

Presenter
Presentation Notes
For example the source node of the product graph corresponds to the pairing of the root node of the light tree and the root node of the gather tree.



Product Graph

G1
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Product Graph

Presenter
Presentation Notes
In the scene this corresponds to combining all the light points into a single cluster, combining all the gather points into a single cluster and then treating the set of all pairs as just a single interaction between these clusters.  In general that is not going to be an accurate enough approximation of the pixel value, so we need a way to refine this approximation.



Product Graph

G1
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Product Graph

Presenter
Presentation Notes
For example we can split the lights into two clusters and then treat the set of all pairs as two interactions.  One between the gather points and the light cluster on the left and the other between the gather points and the light cluster on the right.  This corresponds to moving along the blue arrows in the product graph.  It also corresponds to moving one step down in the light tree.



Product Graph

Light tree

Gather tree

X =
L0 L1 L2 L3
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Product Graph

Presenter
Presentation Notes
We could also have refine the interaction by moving one step down in the gather tree (ie splitting the gather cluster) which corresponds to the green arrows in the product graph.  A key thing to note here is that we do not ever have to actually create the product graph.  Instead we can implicitly traverse the product graph by simultaneously walking both the light and gather trees.  And thus we never actually instantiate the product graph.  Now that we have a way to defining and refining clusters of pairs, we need an inexpensive way to approximate a cluster.



Cluster Representatives

Presenter
Presentation Notes
For example if we want to estimate the contribution of all these gather-light pairs.  



Cluster Representatives

Presenter
Presentation Notes
We do this by choosing representative.  We pick one of the light to be the represenative light and similarly one representative gather point.  Then we approximate all the gather-light pairs using just the single pair of the representative gather point and the representative light point.  We also need a way to bound the error introduced by this approximation.



• Collapse cluster-cluster interactions to point-cluster 
– Minkowski sums
– Reuse bounds

from Lightcuts

• Compute maximum over multiple BRDFs
– Rasterize into cube-maps

• More details in the paper

Error Bounds

Presenter
Presentation Notes
The details of the error bounding is in the paper, but I’ll just review two important components here.  First we’re able to reduce the problem of cluster to cluster interactions into point to cluster interactions using Minkowski sums.  Essentially we shrink one bound box to a point while simultaneously expanding the other bounding box.  Once we applied this transformation we can then reuse a lot of bounding machinery from the Lightcuts paper last year.  Also each point has a directional distribution associated with it such as a BRDF and we need to be able to compute maximums for this distributions over many points.  We reduce all these distribution to a common form by rasterizing them into cube maps and then we can easily combine them and compute maximums.  Again the details are in the paper.



Algorithm Summary

• Once per image
– Create lights and light tree

• For each pixel
– Create gather points and gather tree for pixel
– Adaptively refine clusters in product graph until 

all cluster errors < perceptual metric 

Presenter
Presentation Notes
So now let us summarize our algorithm.  Once per image, we generate the set of light points and cluster them into a light tree.  Then for each pixel we generate gather points and cluster them into a gather tree.  Then we start with a coarse cut in the product graph and adaptively refine it until the each node’s error is less than our perceptual metric.
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• Start with a coarse cut

– Eg, source node of product graph

Scalability

Presenter
Presentation Notes
For example we can start with the coarsest cut which is simply the source node of the product graph.



L6

G2

L1 L2 L3L4 L5L0
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• Choose node with largest error bound & refine

– In gather or light tree

Scalability

Presenter
Presentation Notes
Then at each step we choose the node with the largest error bound and refine it by moving one step down in either the gather tree or the light tree.  In this example we’ve chosen to move one step down in the light tree.



L6

G2

L1 L2 L3L4 L5L0
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G0

• Choose node with largest error bound & refine

– In gather or light tree

Scalability

Presenter
Presentation Notes
Then we repeat the process.



L6

G2

L1 L2 L3L4 L5L0
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• Repeat process

Scalability

Presenter
Presentation Notes
Select the node with the largest error bound and refine it, in this case we chosen to refine by moving one step down in the gather tree.



L6
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• Until all clusters errors < perceptual metric

– 2% of pixel value (Weber’s law)

Algorithm summary

Presenter
Presentation Notes
We keep refining until all node in the cut have error bounds less than our perceptual metric, which is 2% of the estimated pixel value and is based on Weber’s law.



Results

• Limitations
– Some types of paths not included

• Eg, caustics

– Prototype only supports diffuse, Phong, and 
Ward materials and isotropic media

Presenter
Presentation Notes
Before showing you some results let me mention some of the limitations of our system.  We do not currently handle some types of transport paths such as caustics.  Also our implementation only supports a limited set of materials, namely diffuse, phong, ward materials, and isotropic media.



Roulette

7,047,430 Pairs per pixel        Time 590 secs
Avg cut size 174 (0.002%)

Presenter
Presentation Notes
This is our roulette example which highlight motion blur.  Here we are using 256 temporal samples per pixel for an average of over 7 million potential pairs per pixel.  However the cut size is only 174 which means that we only actually evaluated 174 pairs which is only a tiny fraction of all the pairs.  This allowed us to compute this image in just under 10 minutes on a single machine which very fast for this scene.
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Presenter
Presentation Notes
Here we again show the scalability graph for the roulette scene for increasing numbers of gather points.  We also show the time just to compute the eye rays and generate the gather points in purple.



Metropolis Comparison

Our result
Time 9.8min

Metropolis
Time 148min (15x) 
Visible noise
5% brighter (caustics etc.)

Zoomed insets

Presenter
Presentation Notes
Here we show a comparison between our results and an image computed using Metropolis.  Overall the image are very similar but there are two main differences.  First the Metropolis result is on average 5% brighter because it includes some types of transport paths such as caustics that we don’t handle.  But the main difference is that even though we let the Metropolis result run for fifteen times longer there is still some visible noise in the Metropolis result.



Kitchen

5,518,900 Pairs per pixel        Time 705 secs
Avg cut size 936 (0.017%)

Presenter
Presentation Notes
This kitchen result highlights our handling of participating media.  Here we have a potential 5.5 million pairs per pixel but on average we only actually evaluated 936 pairs per pixel which again is only a tiny fraction of all pairs.  This allows us to compute this complex image in only just under 12 minutes on a single machine.



180 Gather points X 13,000 Lights = 234,000 Pairs per pixel

Avg cut size 447  (0.19%)



114,149,280 Pairs per pixel      Avg cut size 821
Time 1740 secs



Scalability with many lights

Approach #2:

Matrix Row-Column sampling

Hašan et al., SIGGRAPH 2007

Slides courtesy Miloš Hašan:
http://www.cs.cornell.edu/~mhasan/



Improving Scalability and Performance

10 min 13 min 20 min

3.8 sec 13.5 sec 16.9 sec

Brute 
force:

Our 
result:
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Presenter
Presentation Notes
Our algorithm reduces the rendering times from minutes to seconds. as you can see in the bottom row of images
This approach could have compelling applications, for example in lighting design.
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A Matrix Interpretation

Pixels
(2,000,000)

Lights (100,000)

Presenter
Presentation Notes
We can interpret the many light problem as a matrix of light-pixel interactions.
This means that each element of the matrix is the contribution of a single light to a single pixel.
So, the columns of the matrix are really images rendered with a single point light.
The rows represent contributions of all the lights to a particular pixel.




• Compute sum of columns
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Problem Statement

= Σ ( )
Pi

xe
ls

Lights

Presenter
Presentation Notes
In this setting, the ideal image we would like to render is equal to the sum of the columns of the matrix.
Or, to put it differently, the color of each pixel is equal to the sum of the matrix row corresponding to that pixel.
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Low-Rank Assumption

= Σ ( )

Pi
xe

ls

Lights

• Column space is (close to) low-dimensional

Presenter
Presentation Notes
The first insight that makes our result possible is as follows.
Let’s take the simple scene on the left, and look at the matrix corresponding to the illumination in the scene.
We can see that the matrix is highly structured. Numerically, it is usually close to low-rank.
Therefore, we can get away with computing only a very small subset of the elements, and still gather enough information to render an accurate image.
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Ray-tracing vs Shadow Mapping

Lights

Pi
xe

ls

Point-to-point visibility: Ray-tracingPoint-to-many-points visibility: Shadow-mapping

Presenter
Presentation Notes
So, we want to sample a subset of the elements, but which ones should we choose?
If we sample like this, we’ll have to use ray-tracing to evaluate the visibility term between lights and pixels.
However, if we sample complete rows and columns, we can use GPU shadow mapping as our visibility algorithm.
This way we can compute elements at a much higher rate.
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Computing Column Visibility

Shadow map         at 
light position

Surface 
samples

• Regular Shadow Mapping

Presenter
Presentation Notes
In particular, we can compute the shadow map at light position, and determine the visibility of the surface samples, as usual.
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Row-Column Duality

Shadow map        at 
sample position

• Rows: Also Shadow Mapping!

Presenter
Presentation Notes
We can also invert this idea and compute the shadow map at the surface sample, and determine the visibility of all lights.




Image as a Weighted Column Sum

Compute small 
subset of columns

compute 
weighted sum

• The following is possible:

• Use rows to choose a good set of columns!
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Presenter
Presentation Notes
It’s usually possible to find a very small subset of the columns such that some linear combination of them is a very good approximation to the ideal result.

If we only knew which subset it is, and what are the weights!
But, given that we know nothing about the matrix up front, it seems impossible to guess this subset.

However, there is a solution: compute a subset of rows, and use them to choose a good set of columns and weights.
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The Row-Column Sampling Idea

compute rows compute columns weighted 
sum

?

choose columns 
and weights

how to choose 
columns and 

weights?

Presenter
Presentation Notes
This leads us to the idea of designing our algorithm as a combination of exploration and exploitation.

As a first step, we explore the structure of the matrix by computing a small, randomly chosen subset of rows.
Next, we analyze the gathered information, and decide which columns to choose and their appropriate weights.
The exploitation step then computes the selected columns, which are finally accumulated into an image.

So, this is the whole algorithm, except for the black box that analyzes the rows and chooses the columns.
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Clustering Approach

Clustering
Choose 

representative 
columns

Columns

Presenter
Presentation Notes
We decide to use the following approach to choosing columns.
We cluster similar reduced columns, and we pick a representative in each cluster.
The accuracy of the algorithm is highly dependent on the quality of the clustering, so we should design the clustering algorithm carefully.
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Reduced Matrix

Reduced 
columns

Presenter
Presentation Notes
First, let’s take the rows that we computed in the exploration stage,
And assemble them into this long, but not very tall reduced matrix.
Now let’s flip attention to the columns of this matrix, which we’ll call reduced columns.
These can in fact be thought of as tiny images that are sub-sampled versions of the full columns.




Weights and Information Vectors

• Weights wi

– Norms of reduced columns 
– Represent the “energy” of the light

• Information vectors xi

– Normalized reduced columns
– Represent the “kind” of light’s contribution

Presenter
Presentation Notes
We’ll also refer to the norms of reduced columns as “weights”, and call normalized reduced columns information vectors.
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Visualizing the Reduced Columns

Reduced columns: 
vectors in high-

dimensional space

visualize as …

radius = weight

position = information vector

Presenter
Presentation Notes
First, let’s think about the reduced columns as vectors in a high-dimensional space.
We’re going to visualize these high-dimensional vectors as circles.

The radius of each circle will correspond to the norm of the reduced column, or equivalently, to the brightness of the little image.
The positions will correspond to the positions of normalized reduced columns in the high-dimensional space.

With a bit of simplification, we can say that circles that are close to each other represent similar lights , and large circles represent lights with strong intensity.



• Algorithm:
1. Cluster reduced columns
2. Choose a representative in each cluster, with 

probability proportional to weight
3. Approximate other columns in cluster by 

(scaled) representative

• This is a Monte Carlo estimator
• Which clustering minimizes its variance?
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Monte Carlo Estimator

Presenter
Presentation Notes
In the paper, we prove that this formula gives the optimal clustering that minimizes the expected error.

So let’s look at its meaning. We’re minimizing the sum of costs of all clusters,
Where the cost of a cluster is defined as the sum over all pairs of elements in the cluster
of the product of norms and squared distance.

This confirms the intuition that strong lights, or lights that are far from each other, should be in separate clusters.







• Minimize:

• where: 
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The Clustering Objective

total cost of all clusters

cost of a 
cluster

sum over all 
pairs in it

weights squared distance 
between information 

vectors

Presenter
Presentation Notes
In the paper, we prove that this formula gives the optimal clustering that minimizes the expected error.

So let’s look at its meaning. We’re minimizing the sum of costs of all clusters,
Where the cost of a cluster is defined as the sum over all pairs of elements in the cluster
of the product of norms and squared distance.

This confirms the intuition that strong lights, or lights that are far from each other, should be in separate clusters.







Clustering Illustration

Strong but similar 
columns

Weak columns 
can be clustered 
more easily

Columns with 
various intensities 
can be clustered

Presenter
Presentation Notes
For example, consider this configuration of reduced columns.
An ideal clustering would look like this.

Intuitively, weak columns don’t matter so much, so we can cluster them more aggressively.
But we would like to cluster strong columns only if they are very similar.
Note that We can cluster columns with different intensities as long as they’re close to each other.




How to minimize?

• Problem is NP-hard
• Not much previous research
• Should handle large input:

– 100,000 points
– 1000 clusters

• We introduce 2 heuristics:
– Random sampling
– Divide & conquer

Presenter
Presentation Notes
Now that we know which formula to minimize, we’d like to know how to do it.
Unfortunately, this problem is NP-hard, like many other combinatorial optimization problems.
Moreover, there’s not much existing research on it.

We also need a solution that’s very fast, since our input size is large, and we don’t want to spend the majority of rendering time in clustering.

So What do we do?



Clustering by Random Sampling

Very fast (use optimized BLAS)
Some clusters might be too small / large

Presenter
Presentation Notes
We can use this random sampling idea:
Pick some points using a suitable probability distribution to act as centers.
The assign all remaining points to the closest centers.

This can be made very fast, but sometimes we might undersample or oversample certain areas.



Clustering by Divide & Conquer

Splitting small clusters is fast
Splitting large clusters is slow

Presenter
Presentation Notes
Another possibility is a divide & conquer algorithm.

Here we pick a plane with a random orientation. Remember this is in many dimensions, here I’ll just visualize it as a line.
Then we move the plane to its optimal position and split the points into two clusters. There are only n possibilities so we can check them all to find the best one.

We then continue this process recursively on the cluster with the currently highest cost.





Combined Clustering Algorithm

Presenter
Presentation Notes
We found that combining these two algorithm works better then any of them by itself.

So let’s say we want to partition these points into eight clusters.

We can find,, let’s say, 5 clusters by random sampling…






Combined Clustering Algorithm

Presenter
Presentation Notes
… and then split 3 time to reach 8 clusters.

So this is our clustering algorithm. We found it pretty efficient.
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Full Algorithm

Compute rows 
(GPU)

Weighted sum

Assemble rows into 
reduced matrix

Cluster reduced 
columns

Choose 
representatives

Compute columns 
(GPU)

Presenter
Presentation Notes
So here’s the full algorithm:

In the exploration stage, we evaluate some rows on the GPU, then focus on the reduced columns.
We obtain a clustering through the techniques I just described, then pick representatives.
Finally, we accumulate the columns into an image.



• 2.1m polygons
• Mostly indirect & sky illumination
• Indirect shadows
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Example: Temple

Our result: 16.9 sec (300 
rows + 900 columns)

Reference: 20 min 
(using all 100k lights)

5x diff

Presenter
Presentation Notes
The temple is our largest scene, not only in terms of the number of polygons, but also its spatial extent. In fact, only a tiny portion of the scene is in view.

Most of the illumination in the scene is indirect or sky illumination.

Also note the detailed indirect shadows on the fine geometry of the pylons.




• 388k polygons
• Mostly indirect illumination
• Glossy surfaces
• Indirect shadows
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Example: Kitchen

Our result: 13.5 sec       (432 rows 
+ 864 columns)

Reference: 13 min       (using all 
100k lights)

5x diff

Presenter
Presentation Notes
Most of the illumination in this kitchen scene is indirect. 

There are a few direct light sources positioned behind the corners and not directly visible to the camera.

Most of the materials have a glossy component.

Indirect shadows are handled accurately.




• 869k polygons
• Incoherent geometry
• High-frequency lighting
• Kajiya-Kay hair shader
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Example: Bunny

Our result: 3.8 sec         (100 rows 
+ 200 columns)

Reference: 10 min       (using all 
100k lights)

5x diff

Presenter
Presentation Notes
The bunny image shows that our algorithm can handle complexity and incoherence both in geometry and in lighting.

Also note that the Kajiya Kay hair shader, showing that arbitrary shaders can be incorporated into our framework.
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